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A theoretical analysis of the laminar base flow fleld of a two-dimensional reentry body 
has been formulated using Telenin’s method. The numerical method divides the flow 
domain into horizontal strips along the x-axis and represents the flow variables as 
Lagrange interpolation polynomials in the vertical coordinate. The complete Navier- 
Stokes equations are used in the near wake region, and the boundary layer equations 
are applied elsewhere. The boundary conditions consist OF the flat plate thermal boundary 
layer in the forebody region and the near wake profile in the downstream region. The 
resulting two-point boundary value problem of 33 ordinary differential equations is then 
solved by the multiple shooting method using 12 segments. 

The theoretical aspects of the convergence of the present scheme are discussed 
thoroughly and are compared to the successful convergence of a smaller system; i.e. 
the two-dimensional, two-phase stagnation point how solution. The unsatisfactory 
convergence of the present study, which is attributed to two shortcomings in the for- 
mulation, can be improved if the following two steps are taken. First, a variable trans- 
formed coordinate should be incorporated to allow different stretching in various 
segments such that the instabilities encountered can be avoided. Secondly, the Lagrange 
interpolation polynomials should be replaced by other forms of polynomials or analytic 
functions to remove the mathematical singularity at the rear stagnation point. 

The specific case considered in this report is that of vehicle reentry at zero angle of 
attack in a Mach 11 free stream with Reynolds number Re,,* ranging from 0.8 x IO5 
to 1.2 x 105. The base wall temperature remains constant at 255°K (460” R) and the free 
stream temperature is 217.43” K (392.28” R). It was assumed that heat conductivity 
and viscosity are linearly proportional to temperature, the specific heat is constant, and 
the Prandtl number is unity. The detailed flow field and thermal environment in the 
base region are presented in the form of temperature contours, Mach number contours, 
velocity vectors, pressure distributions, and heat transfer coefficients on the base sur- 
face. The maximum heating rate was found to be always on the centerline, and the two- 
dimensional stagnation point flow solution was adequate to estimate this value as long 
as the local Reynolds number could be obtained. 

*Presented at the Third International Conference on Numerical Methods in Fluid Dynamics 
in 1971. 

TPresent address: Physical Dynamics, Inc., P. 0. Box 1069, Berkeley, Ca. 94701. 
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INTRODUCTION 

With the introduction of reusable space vehicles, such as the Space Shuttle, 
minimum weight and reusability have become more important factors. To design 
the base region thermal protection system so that an undue weight penalty is not 
assessed to the vehicle, an accurate prediction of the reentry base region thermal 
environment is required. In addition, an accurate definition of the reentry base 
environment is required because the main engine nozzles are situated in the 
region and are exposed to trapped recirculating gases during reentry. The purpose 
of this study is to provide a better understanding of the base separated flow region 

during reentry so that a more accurate reentry base thermal environment can be 
obtained. 

Atmospheric reentry involves total temperature and Mach number condit 
that cannot be effectively simulated experimentally. Numerical schemes w 
can yield accurate solutions without requiring large storage capacity an 
execution time for computers are desirable. One such scheme established by 
Telenin and Tinyakov [I] exploits the obvious numerical advantages of working 
with Cauchy-type problems for the present elliptic system of equations. It was 
first proposed for axisymmetric blunt body problems and later adopted for conical 
flow problems by IIolt and Ndefo [2]. It is well known that Cauchy’s problems 
are in general improperly posed for an elliptic system of equations. IIowever, for 
an a priori’ restricted class of solutions (such as the class of bounded analytic 
functions), Cauchy’s problems become correctly posed for the elliptic systems. 
~atbematically, this means that to solve an elliptic system of equations by hy 
bolic means would necessarily introduce the limitation that the solution can only 
be obtained in certain classes of functions, and the solution for this ~y~er~~~~ 
system exists only when the flow domain does not contain any discontinuities. Since 
the new hyperbolic system is arbitrary, in other words no characteristics exist, the 
integration of equations can be performed in any direction. Physically this is the 
process that allows the disturbances to propagate over the entire fllow domain. 

Assume that the base region is composed of the base wall and two ~rotr~d~~~ 
shrouds (Fig. 1). The cavity walls, the free mixing layer, and the near wake region 
define the bounded domain wherein Telenin’s scheme applies. The Navier-Stokes 
and boundary layer equations are transformed so that the region of interest 
becomes a rectangle that is subsequently divided into strips along the shrouds; 
Lagrange interpolation polynomials of degree four and seven are applied in the 
cavity and the near wake region across the strips. Augmented first-order ordinary 
difI?erential equations are obtained. The problem is then reduced to a two-point 
boundary value problem. 

Errors committed in the arbitrary trial data increase exponentially with the 
number of trial variables and the physical dimension of the integration domain, so 
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FIG. 1. Physical sketch of a two-dimensional Space Shuttle base region. 

Telenin’s scheme is not immune to instability. This is especially true in the present 
case, because an almost singular layer, i.e. the base wall thermal boundary layer, 
exists right at the initial point. Because of the high flow variable gradients there, 
the errors introduced by inaccurate guessing of the initial values are amplified so 
rapidly that integration cannot be carried through this region. Such instability, 
which often appears in dealing with nonlinear problems, is the major difficulty in 
applying .Telenin’s scheme. To handle this problem, the common simple shooting 
method is inadequate. The parallel or multiple shooting method proposed by 
Morrison et. al. [3] and later developed by Bulirsch [4] is found effective in over- 
coming the instability. In essence, the multiple shooting method reduces the 
integration domain length by subdividng the flow domain into a number of seg- 
ments; each segment is treated by the simple shooting method. The guessed initial 
values are corrected iteratively by solving a linear system to satisfy the overall 
boundary conditions on both ends and to eliminate the discontinuities occurring 
at the segment junction points. 

There are several important advantages of the present scheme over a finite- 
difference type computation. It occupies one or two orders of magnitude smaller 
storage space; it consumes at least two orders of magnitude less computer time per 
iteration; the analyticity of the solution is guaranteed; and the equations are 
satisfied exactly on the strips. A simple estimate is given to support these assertions. 
The storage required for the present scheme is only that for storing variables at the 
intersection points of the strips and the segments; it is one or two orders of magni- 
tude smaller than the number of grid points for the finite-difference scheme. The 
computation time for the present scheme is needed for the following three types of 
operations: 

1. Integration of N (number of variables) * 5’ (number of strips) - A4 (number of 
segments) equation. 

2. Integration of M - (N * q2 variational equations. 
3. Inversion of MN * S by N + S matrices. 

The number of operations for one iteration is then approximately MN3S3 + 
M(NS + N2S2) F (number of integration step) or s lo6 with M = 12, N = 7, 
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S = 7, and F = 10. The total computation time per iteration is about 1 set while 
a finite-difference scheme would have to invert an MIVSFby ~~~~~rnatr~~ or about 
MiV3S31?3 operations or lo3 set per iteration. 

FORMULATION OF THE ~~3L~~ 

As shown in Fig. 1, the origin is set at the bottom corner of the base wall and 
the region of interest is surrounded by the base wall, the boundary layers on both 
shrouds, and the near wake region. The basic equations are the continuity equation, 
the Navier-Stokes equations, and the energy equation. 

Nondimensionalize all flow variables by their corresponding free stream values, 
and pressure is made dimensionless by p,U, 2. We assume that the gas is ideal, t 
specific heat is constant, the Prandtl number is unity, and the viscosity and heat 
conductivity are linearly proportional to the temperature. Transforming the region 
of interest from the physical plane to the .$, 7 plane which is defined by 
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where Y,(x) and TPb(x) are top and bottom boundary layer edges, the region of 
interest becomes a rectangle bounded by 17 = 0, 7,~ = 1, < = 0 and the near wake 
boundary (Fig. 2). Replacing the first order derivatives by 

&H&(i), 
substituting these into equations (1) through (4), carrying out the transformation 
according to 

a 1 -- 
ax-HS 

a 1 a -= -_ 
ay W 3 ' 

and f; = yt(x) - y&d 
H 

and rearranging, we obtain: 

Y--l Y-1 
- ~ uTi?pp + puPi? + pvs;T,, - - 

Y 
y b&‘” + vTI;Pn + t&T,) 

- j$+ P”S” - jj-& (TT,), 

+ (’ -22 M’ T [; (4” + v; - 4,‘v,> + (ug + u,y] , (9) 
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where subscripts c and 11 denote djd[ and a/a?. v(M) is the ~randt~-~eycr function. 
The subscripts b and bo indicate bottom boundary layer edge conditions at 
arbitrary 5 and at [ = 0; similar conditions on the top boundary are denoted by 
5 and to. We shall divide the domain of interest into S-l strips, as shown In Fig. 2, 

BASE WALL NEAR WAKE 
BOUNDARY 

&G. 2. Construction of strips and segments on transformed plane. 

and approximate the flow variables in terms of Lagrange ~nter~~~atio~ polynomials 
across the strips; i.e. 

These expressions are substituted into Eqs. (6)-(12) with the requirement that the 
resulting equations be satisfied identically on each line r)i . An approximating 
system of 7s first-order ordinary differential equations is then obtained for the 
approximate values ui , vi , pi , Ti , ci , cri , and /Ii of the dependent variables on 
S lines; ~l;~ = constant. For the present case S = 7 and the bus are P,O.95;, 0. 
0.85, 0.73333, 0.61667, and 0.5. 
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Error Growth in the Boundary Layer 

The major difficulty encountered in carrying out the present computation was 
the instabilities. Gilinskiy and Telenin [5] showed that an error caused by the 
approximation of flow variables by Lagrange interpolation polynomials across the 
strips may oscillate along the strips in the linear case. In present nonlinear systems, 
the error not only oscillates but grows rapidly to the neighboring strips. To cope 
with this, the author relied upon two fundamental tools, the boundary layer 
equations and the multiple shooting method; the latter will be discussed in the next 
section. 

The entire flow domain of interest was first conceived to be governed by the 
Navier-Stokes Eqs. (1) through (5) so that the problem could be treated through a 
unified point of view. However this treatment experienced tremendous problems 
of instability because the uniform validity of the Navier-Stokes equations 
practically breaks down when dealing with a problem of extremely nonuniform 
grids. For high Reynolds number flows with a large separation bubble, the 
boundary layer equations are more feasible for the high gradient areas. Although 
this limit the accuracy of the solution to less than l/Re there, the instability problem 
can be avoided partially. 

The problem of error propagation in the base wall boundary layer is of special 
importance because almost all the physical processes in determining the base flow 
heat transfer properties occur there and in the free shear layers. The governing 
equations for flow can also be regarded as the error propagation equations, since 
without knowing the solution a priori the guessed initial values may contain an 
error of their own magnitude. We shall focus our attention upon the error growth 
of the heating rate across the base wall boundary layer. The following equation 
gives the growth rate of p = HaTlax at < = 0 along the strip: 

jgf = $ (i + q[) p, - /3” - (y - 1) A4zPrTu2 

+ RePrRp, T, c, u, ,Q (16) 

The last term on the right side can be neglected if boundary layer equations are 
used; however, if it is retained on the Navier-Stokes equations, rapid error amplifi- 
cation caused by this term will occur since the initial values cannot always be 
chosen so as to guarantee the last term’s smallness. The second and third terms are 
dominant then and remain to be negative; this will therefore reduce the danger of 
divergence. The approximate solution of the above equation can be represented 
by the following relation: 

P -- 
i ((y - 1) $iPrTcr2)1/2 tan-1 ((y - 1) A42 PrTu2)1/2 g ” (17) 
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so that B will decrease when 5 increases; in other words the integration is sta 
Similar analyses can also establish the fact that in shear layers the error is ampfi 
slower by boundary layer equations than by Navier-Stokes equations. 
this result, we shall use boundary layer equations on base wall, shrouds, and in %I-ee 
shear layers and Navier-Stokes equations in the remaining regions. This ~~~~~- 
matical model is depicted in Fig. 3. 

RG. 3. Governing equations and segmentation of the base flow regions. 

Boundary Layer Equations 

In the base wall thermal boundary layer, Eqs. (k 1) and (12) are s~pple~e~t~ 
the following governing equations: 
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In the forebody thermal boundary layer and shear layer downstream of the 
shrouds the following set of equations is applied: 

pd2T, = pdX+ + qb> T, - PUT,& - (y - 1) M:uS2pwh~ 

+ & (TT,), + ( -;; M’ T(uJ2, 

(23) 

PT = PITI 9 (25) 

% , g’5 , A = 0. (26) 

Substituting relation (15) into Eqs. (18)-(22) and Eqs. (23)-(26), we obtain an 
approximating system of 7 x 4 first order ordinary differential equations for the 
base wall thermal boundary layer, 7 x 4 equations for the forebody boundary 
layer, and 7S equations for the shear layer. Along the strip y = Q in segment 3, 
where the Navier-Stokes equations are applied on and below it and the boundary 
layer equations are applied above it, the vertical derivatives are calculated by using 
the same seventh order Lagrange interpolation polynomials so that the vertical 
derivatives are continuous across this strip. In the first two segments, the vertical 
derivatives are computed separately by two fourth order Lagrange interpolation 
polynomials in the forebody boundary layer and in the flow underneath the shroud. 

With the present formulation, all the following physical phenomena have been 
taken into consideration: 1. the interaction between the inviscid flow and the 
viscous flow is defined by the free interaction Eqs. (13) and (14) along the external 
edge of the viscous layers; 2. the interaction between the shear layer and the 
recirculating core is accounted for by enforcing the continuity of the flow variables 
and their vertical derivatives a/+ across the strip in segment 3; 3. the upstream 
propagation of pressure wave through the shear layer near the trailing edge of the 
shroud is implicitly included through the application of Navier-Stokes equations in 
the near wake region (segments 2 and 3) and the iterative numerical scheme; and 
4. the existence of the base wall thermal boundary layer is explicitly formulated 
using the boundary layer equations along the base wall. If the validity of these 
equations is questioned near the upper left corner underneath the shroud in 
segment 1, because of the nature of the boundary conditions applied there, either 
the Navier-Stokes or the boundary layer equations would yield approximately the 
same results. 

To employ the present scheme, we should remember that no singularity can be 
allowed in the domain of interest except right at the segment junction points where 
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the Poincart analysis can be carried out in advance. From Eqs. (233 and (24) it is 
clear that the rear stagnation point is a singular point of the differential equations 
in segments 4 though 11. Since the location of the rear stagnation point is n.ot 
known a priori, it poses a serious problem, because during the iteration this point 
may emerge in the integration domain such that the integral curves near it contain 
errors of an unacceptable magnitude. This difhculty can be avoided if the Lagrange 
interpolation polynomials are replaced by other forms of analytic functions; 
however the advantage of having the ordinary d~~e~e~t~al equations written in 
explicit form is Yost. We will pursue only the solutions upstream of the rear stagna- 
tion point. 

Boundary Conditions 

Initial Thermal Boundary Layers 

External to the shrouds, boundary conditions correspond to the solutions of 
forebody thermal boundary layers. Assuming no separation is ahead of the shroud 
trailing edge, the solutions of the compressible boundary layer past a Aat plate are 
applied. With Prandtl number equal to unity, we have 

Near Wake &A.&ions 

The downstream boundary condition is a near wake profile obtained by extra- 
polating Kubota’sl far wake solution upstream. Defining X, ji as the coordinates 
after a Stewartson-Illingworth transformation and with the origin set at the neck, 
we have 

I Kubota, T.: Laminar Wake With Streamwise Pressure Gradient, GALCIT Hypersonic 
Research Project. Internal Memorandum No. 9, May 1962. 

581/15/3-3 
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FIG. 4. Near wake boundary profiles. 

and l3 is the momentum thickness. Since the external flow is represented by the 
Prandtl-Meyer solution in the present study, the neck condition corresponds to 
that when the flow is parallel to the centerline. For the present problem, with 
Mm = 11, the Meatneck = 9.586. The total heat loss of the flow past the vehicle is 
estimated by neglecting the base heat transfer and assuming the vehicle length is 
20 times the base height, so that the Stanton number is taken to be -0.0856155. 
The (B/I&,tneck was put equal to 0.0618602 and Y,/H = 0.6389918. Figure 4 
shows the near wake profiles. 

NUMERICAL PROCEDURES - MULTIPLE SHOOTING METHOD 
AND CONTINUATION METHOD 

A serious shortcoming of the shooting method becomes apparent when the 
differential equations amplify the errors so rapidly that divergence occurs before 
the initial value problem can be completely integrated. This may happen even 
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though accurate guesses are made for the initial values. The multiple shootmg 
method can frequently circumvent the difficulty, or else a finite difference SG 
can be employed. The method is essentially a combination of difference scheme an 
initial value problems. It is designed to suppress the growth of the errors in the 
trial integral curves by dividing the domain of integration into a number of sub- 
intervals, integrating each individual initial value problem over its own interval, 
and then simultaneously adjusting all the guessed initial data to satisfy the boundary 
conditions and continuity conditions at the junction points. 

The formulation of the multiple shooting method can be found in 
and a comprehensive version was given by lirsch 841. He also gave a detailed 
description of numerical computations of th cobian matrix and the a~~~i~~~~~~ 

royden’s technique 1’71; these will not be iterated here. The following brief 
discussion of the convergence of the shooting method given by Meng [S], however, 
will be included for completeness. 

Let r and y be the boundary conditions and the unknown vector; therefore, the 
~o~~verge~~e sphere and rate of convergence for the shooting method are 

and 

with the Jacobian matrix G. 

for all i’s, 

and 1 is the number of iterations counted after the initial values fall within t 
convergence sphere. By the Kantorovich theorem ]9], the convergence is guarantee 
as long as 12, = Bo+C is smaller or equal to one-half. For simple problems, con- 
vergence can often be obtained by simply going through many iterations 7In 
complex problems, one has to modify the guessed values to fulf3B as many of the 
Mantorovich sufficient conditions as possible for convergence. ~ro~icall~~ the labor 
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required to make such a test is NS times more than that needed for solving the 
problem itself. For example, the quantity K needs integration of 

MNS(N2SZ + 2NS - 1)/2 

equations throughout the entire domain so that the advantage of working with the 
Cauchy-type problem will be greatly diminished. Since the Kantorovich ho cannot 
be obtained economically for the present problem, to illustrate how the multiple 
shooting method converges according to the theorem, we carried out a two-phase 
stagnation point flow solution. This was a smaller system of seven equations and 
four subintervals; the Euclidean error norm and h, are presented in Figure 5. One 
finds that the method does converge. Even the first guess falls outside the con- 
vergence sphere; as soon as it hits inside the sphere, the convergence is reached. 

. - LOGlo ERROR 

1234567 
NUMBER OF ITERATIONS 

FIG. 5. Error norm and Kantorovich h, 

The subdivision of the domain for the multiple shooting method is determined 
by the relation / &+r - tj j TV l/& , if all the derivatives are Lipschitz continuous 
so that a stable integration can be guaranteed. In selecting this Lipschitz constant 
Li , it is clear that the maximum row in the matrix Gj , 

is a measure of maximum local error growth resulting from small perturbations at 
the initial point of the subinterval j. Direct substitution of this value of B, to 
determine the domain length, i.e., A[$ N l/Boj , however does not yield a practical 
answer for the multiple shooting method. Because the value of Bo, is quite large in 
nonlinear problems, for example, it is of the order of lo6 for the base wall boundary 
layer and of IO3 for the downstream regions. Therefore in theory, about lo3 or lo6 
subintervals to insure against the instability are required, but in practice the 
advantage of the Cauchy-type problem will be offset if the number of subintervals 
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becomes comparable to the number of the gri s by the difference scheme. 
dilemma can be resolved by incorporating the ntinuation method develope 
Roberts and Shipman [lo] with the multiple shooting method. They ern~~oye~ 
the simple shooting method and stretched the domain length to the &al length in 
each iteration to solve a problem which could not be solved by the shootkrg method 
alone. Ht was shown [9] that the method will be stable if the stretched length is 

ed by 1/2%KB$ ; ?i? is the uniform bound of the derivatives over [tj 5 cj+l]IIE;W 
and 

r it is found that one should not continue the segment length this way in 
either because the denominator is very large, ~0(10~O)~ but should f&d the 

&jllt?W by A&new = A~jolcl(~KB~j)old/~;iKB~~~~~ , once one can have a stable 
integration over the AEO1cl . By the present experience, dtjnew = ~~~~~~~~~~~~/~~~~~~ 
was found adequate in stretching the domain length during each iteration. 

In summary by applying Broyden’s correction technique, the convergence factor, 
and the continuation method to the multiple shooting me&hod, the present problem 
was solved using 12 subintervals during the first few iterations. In following itera- 
tions closer to the convergence, the number of segments was reduced to eight 
without any effect upon the stability. 

Finally it should be noted that the success of the present iteration scheme rehes 
heavily upon the accuracy of the integration routine; a seventh order Runge- 
scheme with stepsize control established by Fehlberg [I I] was hence applied in the 
present analysis. 

RESULTS AND DISCUSSION 

The present problem is reduced to a system of 33 equations after applying t 
symmetry condition along the centerline and the interaction equation along the 
shear layer. The computation was conducted on a LJNJVAC 1108 computer. The 
program occupies a 54K storage space. In initial trials six segments were employer, 
and the convergence appeared poor. Later double precision and 12 segments 
were used; this improved the convergence. The bulk of the computation time 

ent in generating the Jacobian matrix, nearly 2.67 min each time; howeve 
employing Broyden’s technique, the time was reduced to 4.71 min to complete four 

erations. The Jacobian matrix was first computed every five iterations with 
royden’s technique applied accordingly; the solution yielded obvious errors, It 

appeared that the method produces the best result if the Jacobian matrix is 
computed every three iterations. 
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The Euclidean error norm CE, 1 hi I2 and the variation of the convergence 
factor (see Meng [S]) are shown in Fig. 6. The error decreases steadily for the first 
13 iterations then oscillates, and the convergence factor shows similar features. 

,I- LOG,0 CONVERGENCE 
FACTOR 1“ 

3 O0 

t 

q - LOGlO ERROR OF FREE 
BOUNDARY VALUE 
PROBLEM t 

-2 g 
E 
h 

1 3 5 7 9 11 I3 15 17 19 21 23 
NUMBER OF ITERATIONS 

FIG. 6. Euclidean error norm and convergence factor versus iteration. 

This lack of convergence was conjectured primarily because of tlxing the segment 
lengths by the considerations of stability alone, as was outlined previously. Since 
each set of differential equations applied in different segments has its own physical 
capabilities or limitations to generate certain flow patterns, the associated segment 
lengths over which these equations are integrated would therefore play an impor- 
tant role in achieving convergence. Based upon this the first three segment lengths 
were then treated as additional unknowns; hence the system was augmented to 
36 equations, and the problem was solved as a multiple free broundary-value 
problem. The convergence is improved (Fig. 6), although the oscillation still 
persists. The final segment configuration indicates that the base wall boundary 
layer thickness equals O.O7478H, the two Navier-Stokes equation segments are 
of 0.0147848 and 0.01 118H respectively followed by eight boundary layer equation 
segments of 0.16H each. The segment lengths vary little with the free stream 
Reynolds number. The continuation method which was mentioned in the last 
section succeeded in stretching the whole domain length from 0.2H to 0.68H 
smoothly. 

The evolution of the velocity vector and temperature contours through iterations 
to satisfy the boundary conditions and continuity across the subintervals are shown 
in Meng [S]; here we will present the final results only. Fig. 7a shows the shear layer 
is accelerated under the influence of the favorable pressure gradient before it 
reaches the edge of the shroud, and the velocities in the recirculating region have a 
maximum value of about 1 % of external flow velocity. The vertical dimension of 
the reverse flow region is small in the region x/H > .3. It is apparent that there are 
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]FsG. 7a. Velocity vector in the two-dimensional Space Shuttle base region. Free stream Mach 
no. = .I100 + 02; Reynolds number = .lOOO + 06; free stream temperature = .3923 + 03; 
upper shroud edge math no. = .1240 f 02; Prandtl number = .I000 + 01; base wall tempera- 
ture = .4600 + 03; lower shroud edge math no. = X40 + 02; Angle of attack = .OOW; and 
total temperature = .8500 + 04. 

Pro. 7b. Temperature contour in the two-dimensional Space Shuttle base region. 
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still discontinuities in the velocity across the segments at x/H = .l and .2. This 
error could not be reduced further with more iterations, its magnitude oscillates as 
depicted in Fig. 6 by the square symbols. The boundary conditions on the base 
wall (x/H = 0) and on the shroud (y/H = 1 and x/H < .l) are satisfied. It is 
interesting to find the horizontal velocity on the plane (x/H = .l) has two maxima, 
one is at 7 = 1.13 and another at q = .78. The velocity on the centerline is always 
horizontal and in the reverse direction; in fact, we are dealing with only the flow 
upstream of the rear stagnation point. The fact that the contour lines failed to be 
normal to the centerline in Fig. 7b indicates that errors resulting from the Lagrange 
interpolation exist. In an area near the wall, the gap between the contours is small 
because of the high heating rates. The cold and hot spots emerge in Figure 7b and 
the profiles show little variations along the horizontal direction throughout the near 
wake region. The diamond shape of the temperature contour in Figure 7b shows 
that some discontinuities exist across the segment even though the rest of the region 
shows quite results. From the temperature contour plots, it is clearly seen that 
because of the small flow velocities in the base wall boundary layer, the heat is 
transferred almost entirely by the conduction process and the flow convects the heat 
generated in the shear layer to the compression region and recirculates it back along 
the centerline. The effects of the protruding shrouds upon the base thermal environ- 
ment would be to pull the pressure rise and high heat flux occurring in the recom- 
pression region away from the base wall so that the heating problems to the base 
wall and engines are reduced. 

Since the plot routines pick up values only at equal vertical intervals, the flow 
variables on the shear layer edge are often missed in the temperature contours and 
velocity vector plots. The edge Mach number and pressure distributions are given 
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FIG. 8. Mach number and pressure distribution along the shear layer edge. 
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for Reynolds number Re,,x = 105. The pressure first drops smoothly 
forebody boundary layer and then reaches the base pressure drastically 

near the trailing edge of the shroud, while the edge Mach number increases in the 
same manner. The pressure distribution on the centerline is also shown in Fig. 8; 
it is nearly constant throughout the cavity region until near x/H = 0.1 where it 
begins to follow the external pressure very closely. The ach number at the neck, 
Q.587, is also marked in the same figure; if the external fiow were p 
centerline. the external Mach number should be equal to this value. 
pressure distributions for Re,,H = 1.2 X lo5 at various axial locations are shown 
in Fig. 9. The pressure in the forebody boundary layer and downstream shear 

FIG. 9. Vertical pressure profiles at various axis! Locations. 

layers is nearly constant except for interpolation errors; the pressure in the cavity 
on the base wall is nearly four times higher than that at the edge. 
x/H = 0.1, the pressure drops drastically underneath the shroud edge a 
the value on the centerline is close to that on the externa 

The heat transfer coefficients based upon the recovery temperature are shown in 
Fig. 10. The maximum heating rate is always on the centerline and its value 
increases monotonically with the free stream Reynolds number. Detailed 
patterns for various Reynolds number are given in Figs. 11, 12 and 13. E 
velocity vector plots of Figs. lla, 12a, and 13a, we can find that the shro 
Mach numbers (shown on the top of the plot) varies slightly and rno~o~o~~cal~~ 
with the free stream Reynolds numbers (also shown on the top of the figure) an 
the vector plots are quite similar although the convergence was even poorer for 
higher Reynolds numbers. Corresponding temperature contours for various cases 
are presented in Figs. 1 lb, 12b and 13b; the same dimensionless contour identifka- 
tion values T/T, for all cases are listed on the right-hand side. 

In Fig. 1 lb, the diamond shape discontinuity disappears for the lower Reynolds 
number case. The highest temperature values in the base region are indicated by the 
contour E(T = 6.75T,) in Fig. llb near x/H = .4, by the contour D(T = 6.25Ta) 
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FIG. 10. Heat transfer coefficient on base wall versus Y/H,. 
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FIG. lla. Velocity vector in the two-dimensional Space Shuttle base region for Re = 
0.87 x 105. Free stream Mach no. = .llOO + 02; Reynolds number = .8700 + 05; free stream 
temperature = .3923 + 03; upper shroud edge Mach no. = A237 + 02; Prandtl number = 
A000 + 01; base wall temperature = .4600 + 03; lower shroud edge Mach no. = A237 + 02; 
angle of attack = ,OOOO; and total temperature = .8500 + 04. 
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FIG. Ilc. Mach number contour in the two-dimensional Space Shuttle 
Re = 0.87 x 103. 
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FIG. 12a. Velocity vector in the two-dimensional Space Shuttle base region for Re = 1.1 x 105. 
Free stream math no. = .llOO + 02; Reynolds number = .llOO + 06; free stream temperature = 
.3923 + 03; upper shroud edge math no. = .1242 +- 02; Prandtl number = .lOOO + 01; base 
wall temperature = .4600 + 03; lower shroud edge math no. = .1242 + 02; angle of attack = 
.OOOO; and total temperature = HO0 + 04. 
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FIG. 12b. Temperature contour in the two-dimensional Space Shuttle base region for Re = 
1.1 x 105. 



FIG. 13a. Velocity vector in the two-dimensional Space Shuttle base region for Re = 1.2 x I@. 
Free stream Mach no. = SlOO + 02; Reynolds number = .1200 f 06; free stream temperature = 
.3023 + 03; upper shroud edge Mach no. = .1265 + 02; Prandtl number = .lOOO f 01; base 
wail temperature = .4600 +- 03; lower shroud edge Mach no. = .I265 + 02; angle of attack = 
.QOOQ; total temperature = .8500 + 04. 
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FIG. 13b. Temperature contour in the two-dimensional Space Shuttle base region for Re = 
1.2 x 105. 
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in Fig. 12b near x/H = .35. The hot spot is always located in the same area and is 
off the centerlines. It is not certain, however, that the hot spot will move toward 
the base wall when the free stream Reynolds number increases. The Mach number 
contour is also shown for the Re,,H = 0.87 x lo5 case in Fig. Ilc. The major 
portion of the recirculating core is subsonic, the sonic line extends from the wake 
into the forebody boundary layer, and external to it the viscous layer is entirely 
supersonic. The subsonic region in the forebody boundary layer is very thin so that 
little upstream influence can be transmitted through this viscous layer. This may 
explain the weak upstream influence observed in the experimental study of near 
wakes by Batt and Kubota [12]. The fact that a significant portion of the viscous 
layer is supersonic also confirms that the imbedded shocks will emerge deeply in the 
viscous region as was suggested by Weiss and Weinbaum [ 131. 

Although we do not intend to dwell on the aspects of comparing the present 
results to experimental data since the latter do not exist for the present flow 
conditions and geometry, it is still interesting to compare the present results to 
those of Larson et al. [14]. They found NU E 100 - 150 for T, = 0.34 - 0.716T,, 
at ilJa = 3 and Re,,u z 107, while the present study gives NU s 5 for T, = 0.046 
Ttm at A&, = 11 and Re,,H s 105. The observed trend that the base wall thermal 
boundary layer thickness varies with both the Reynolds number and temperature 
difference between the wall and recirculation region is believed to be correct. 
Fig. 14 shows the value 

obtained in comparison with the similar solution for a two-dimensional stagnation 
point flow solution given by Cohen and Reshotko [15]. The values scattered around 
the theoretical value mO.506, and they reveal no strong dependence upon the local 

Nf.." 

COHEN & RESHOTKO X.506 

.3 I I I 
.8 .S 1.0 1.1 1.2 

Re,,H x 1O-5 

FIG. 14. Comparison with the two-dimensional stagnation point flow solution. 
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edge Reynolds number. The two-dimensional stagnation point flow is therefore 
seen as a close approximation of the base flow. furthermore as shown by v/U= 
versus Y/M QTP the base wall boundary layer edge in Fig. 15, the magnitude of the 
vertical velocity decreases as the Reynolds number increases, and the linear 
dependence upon the coordinate y/H is true only near the centerhne. For gractica 
purposes, it can be asserted that the base flow is a stagnation point type flow; the 
maximum heating rate can be derived from the stagnation point flow results so 
long as the local Reynolds number can be estimated. 

FIG. IS. Velocity (c) near the edge of the base wall boundary kyer. 

For future investigations of even higher Reynolds number flows by the present 
method, the following considerations should be noted. First the ~~stab~~it~~s 
encounteres for integration across the base wall thermal boundary layer can be 
avoided if a variable transformed coordinate is incorporated to allow different 
stretching in various segments. Secondly it should again be emphasized that when 
using Lagrange interpolation polynomials in formulating a Cauchy problem, there 
should exist no singularity in the Bow domain, because when such singularity 
emerges, the advantage of using the Lagrange interpolation polynomials will be Lose. 
Replacing the Lagrange interpolation polynomials by other sets of polynomials or 
analytic functions can remove this singularity, but one more matrix inversion to 
obtain the system of first order differential equations would then be necessary. To 
include the solution downstream of the rear stagnation point, such re~~~~ern~l~t is 
needed. 

Although for simplicity we have concentrated on the zero angle of attack case, 
extensions to skew cases offer no difficulty. The various aspects of the rate of 
convergence, the storage requirement, the computation time, and the exactness of 
the solution on the strips favor the present method when it is compared to rn~~~ 
existing schemes which deal with high Reynolds number flows, provided the Bow 
has a finite domain and contains no singularity. 
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